Repository of Research and Investigative Information

Repository of Research and Investigative Information

Dezful University of Medical Sciences

Analysis of the Antiproliferative Effects of Curcumin and Nanocurcumin in MDA-MB231 as a Breast Cancer Cell Line

(2016) Analysis of the Antiproliferative Effects of Curcumin and Nanocurcumin in MDA-MB231 as a Breast Cancer Cell Line. Iranian Journal of Pharmaceutical Research. pp. 231-239. ISSN 1735-0328

Full text not available from this repository.

Official URL:


Cancer is one of the main causes of mortality in the world which appears by the effect of enviromental physico-chemical mutagen and carcinogen agents. The identification of new cytotoxic drug with low sid effects on immune system has developed as important area in new studies of immunopharmacology. Curcumin is a natural polyphenol with anti-oxidative, anti-inflammatory and anti-cancer properties. Its therapeutic potential is substantially hindered by the rather low water solubility and bioavailability, hence the need for suitable carriers. In this report we employed nanogel-based nanoparticle approach to improve upon its effectiveness. Myristic acid-chitosan (MA-chitosan) nanogels were prepared by the technique of self-assembly. Curcumin was loaded into the nanogels. The surface morphology of the prepared nanoparticles was determined using SEM and TEM. The other objective of this study was to examine the in vitro cytotoxic activity of cell death of curcumin and nanocurcumin on human breast adenocarcinoma cell line (MDA-MB231). Cytotoxicity and viability of curcumin and nanocurcumin were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and dye exclusion assay. Transmission electron microscopy confirmed the particle diameter was between 150 to 200 nm. Proliferation of MDA-MB231 cells was significantly inhibited by curcumin and nanocurcumin in a concentration-dependent manner in defined times. There were significant differences in IC50 curcumin and nanocurcumin. curcumin-loaded nanoparticles proved more effective compared to TQ solution. The high drug-targeting potential and efficiency demonstrates the significant role of the anticancer properties of curcumin-loaded nanoparticles.

Item Type: Article
Keywords: Anticancer activity Curcumin Nanocurcumin MTT assay Human breast adenocarcinoma acid-modified chitosan nanoparticles thymoquinone Pharmacology & Pharmacy
Page Range: pp. 231-239
Journal or Publication Title: Iranian Journal of Pharmaceutical Research
Journal Index: ISI
Volume: 15
Number: 1
ISSN: 1735-0328
Depositing User: مهندس مهدی شریفی

Actions (login required)

View Item View Item